Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans.
نویسندگان
چکیده
The gram-positive bacterium Streptococcus mutans is the primary causative agent in the formation of dental caries in humans. The ability of S. mutans to adapt and to thrive in the hostile environment of the oral cavity suggests that this cariogenic pathogen is capable of sensing and responding to different environmental stimuli. This prompted us to investigate the role of two-component signal transduction systems (TCS), particularly the sensor kinases, in response to environmental stresses. Analysis of the annotated genome sequence of S. mutans indicates the presence of 13 putative TCS. Further bioinformatics analysis in our laboratory has identified an additional TCS in the genome of S. mutans. We verified the presence of the 14 sensor kinases by using PCR and Southern hybridization in 13 different S. mutans strains and found that not all of the sensor kinases are encoded by each strain. To determine the potential role of each TCS in the stress tolerance of S. mutans UA159, insertion mutations were introduced into the genes encoding the individual sensor kinases. We were successful in inactivating all of the sensor kinases, indicating that none of the TCS are essential for the viability of S. mutans. The mutant S. mutans strains were assessed for their ability to withstand various stresses, including osmotic, thermal, oxidative, and antibiotic stress, as well as the capacity to produce mutacin. We identified three sensor kinases, Smu486, Smu1128, and Smu1516, which play significant roles in stress tolerance of S. mutans strain UA159.
منابع مشابه
In vitro Manganese-Dependent Cross-Talk between Streptococcus mutans VicK and GcrR: Implications for Overlapping Stress Response Pathways
Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activatin...
متن کاملThe Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism.
Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL d...
متن کاملStreptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism
Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eD...
متن کاملInactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance.
Many clinical isolates of Streptococcus mutans produce peptide antibiotics called mutacins. Mutacin production may play an important role in the ecology of S. mutans in dental plaque. In this study, inactivation of a histidine kinase gene, ciaH, abolished mutacin production. Surprisingly, the same mutation also diminished competence development, stress tolerance, and sucrose-dependent biofilm f...
متن کاملA novel gene involved in the survival of Streptococcus mutans under stress conditions.
A Streptococcus mutans mutant defective in aciduricity was constructed by random-insertion mutagenesis. Sequence analysis of the mutant revealed a mutation in gidA, which is known to be involved in tRNA modification in Streptococcus pyogenes. Complementation of gidA by S. pyogenes gidA recovered the acid tolerance of S. mutans. Although the gidA-inactivated S. pyogenes mutant exhibited signific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 1 شماره
صفحات -
تاریخ انتشار 2008